MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page 2	Mark Scheme	Syllabus	Paper
	GCE O LEVEL – October/November 2013	4037	13

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.

When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.

The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.

Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

	Page 3		Mark Scheme			Paper
		GCE O LEVEL – O	October/Novembe	r 2013	4037	13
1	(i) ${}^{6}C_{2}(2^{4})$ $240p^{2}$ $p = \frac{1}{2}$	B1 M1 A1 [3]	Seen or implied, unsimplified M1 for their coefficient of $x^2 = 60$ and atter to solve			
	(ii) coeffic	ients of the terms needed	M1	M1 for re	alising that 2 terms	are involved
	(-1) ⁶ C	$C_1(2)^5 p + (3 \times 60)$	B1	B1 for $(-1)^{6}C_{1}(2)^{5}p$ or $-192p$, using their		2p, using their p .
	= 84		A1 [3]			
2	$lg \frac{y}{5y}$	$\frac{1}{1+60} = 1$ g10	B1 B1		$g y = lg y^{2}$ = lg10 or equivalen	t, allow when seen
	Or $\lg y^2 =$	lg10 (5y + 60)	M1		se of $\log A - \log B =$ $\log B = \log AB$	logA/B
	$y^2 - 50y - 600 = 0$ leading to $y = -10$, 60 y must be positive so $y = 60$			and an att	forming a 3 term quempt to solve r = 60 only	uadratic equation

Page 4	Mark Sch	eme		Syllabus	Paper
	GCE O LEVEL – Octob	r 2013	4037	13	
3 $\tan^2 \theta - \sin^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta$			Marks are awarded only if they can lead a complete proof for the methods other the those shown below		•
	$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$	M1		ealing with tan and	a fraction
	$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$	M1	M1 for fa	actorising	
	$=\frac{\sin^4\theta}{\cos^2\theta}$	M1	M1 for u	se of identity $\cos^2 \theta$	$\theta + \sin^2 \theta = 1$
$=\sin^4\theta\sec^2\theta$		A1 [4]	A1 for all correct		
Alt solution 1					
Using $\tan^2 \theta = \sin^2 \theta$	$\theta \sec^2 \theta$				
LHS = $\sin^2 \theta \sin^2 $	$\sec^2 \theta - 1$)	M1 M1 M1	M1 for fa	of $\tan^2 x = \sin^2 x \sec^2$ actorising se of identity	x
$=\sin^4 \theta$	$\sec^2 \theta$	A1	A1 for all correct		
Alt solution 2					
RHS = $\sin^4 \theta s$	$ec^2 \theta$				
$=\frac{\sin^2\theta}{\cos^2\theta}$	$\frac{\sin^2\theta}{2\theta}$	M1	M1 for splitting $\sin^4 \theta$ and use of identity		se of identity
$=\frac{\sin^2\theta(1-\cos^2\theta)}{\cos^2\theta}$		M1	M1 for multiplication		
$=\frac{\sin^2\theta-\sin^2\theta\cos^2\theta}{\cos^2\theta}$		M1	M1 for w	vriting as two terms	and cancelling
$= \frac{\sin^2 \theta}{\cos^2 \theta}$ $= \tan^2 \theta - \frac{1}{2}$	A1	A1 for al	l correct		

Page 5		Mark Scheme		Syllabus	Paper
	GCE O LEVEL – Octobe	r/Novembe	er 2013 4037 13		
			1		
4 (i) $\frac{dy}{dx} = \frac{(x+x)^2}{(x+x)^2}$	$\frac{(3)^2 2e^{2x} - e^{2x} 2(x+3)}{(x+3)^4}$	M1	M1 for att	empt at quotient ru	ıle
- 2	~ (_)	A2, 1, 0	-1 for eac	h error	
$=\frac{2e^{2x}}{(x)}$	(x+2) $(x+3)^3$, $A = 2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
Alt solution		[4]			
$\frac{\mathrm{d}y}{\mathrm{d}x} = \mathrm{e}^{2\mathrm{x}} \left(-2\right)$	$(x+3)^{-3} + 2e^{2x}(x+3)^{-2}$	M1	M1 for att	empt at product ru	le
	N N N N N N N N N N N N N N N N N N N	A2,1,0	-1 for eac	h error	
$=\frac{2e^{2x}(x+1)}{(x+3)^2}$	$(\frac{2}{3}), A = 2$	A1	Must be convinced of correct simplification e.g. sight of $(x + 3 - 1)$ or $(x + 2)(x + 3)$		
(ii) $x = -2, y$	$= e^{-4}$	B1, B1 [2]	Accept 1/	e ⁴	
5 (i) $f^{2}(x) = f$	$(2x^3)$				
=2	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)^3\right)^3$	M1	M1 for =	$2(2x^3)^3$ or $2\left(2\left(\frac{1}{2}\right)\right)$	3)3
=	2 ⁻⁵	A1	For 2 ⁻⁵ onl	У	
		[2]			
Alt method					
$f\left(\frac{1}{2}\right) = \frac{1}{4}$	$f\left(\frac{1}{4}\right) = 2^{-5}$	M1	M1 for f c	of their f $\left(\frac{1}{2}\right)$	
		A1	For 2 ⁻⁵ onl		
(ii) $f'(x) = g$ $6x^2 = 4 - 1$	' (x) 10x	B1 B1	B1 for 6x ² B1 for 4 –		
Leading	to $(3x-1)(x+2) = 0$	M1		lution of quadratic	equation obtained
$x = \frac{1}{3}, -2$	2	A1 [4]	from diffe A1 for bo	rentiation of both th	

	Page 6	М	ark Scheme		Syllabus	Paper	
			- October/Novembe	er 2013	4037	13	
6	Area under the	e curve:					
	$\int_{0}^{\sqrt{2}} 4 - x^2 \mathrm{d}x =$	$\left[4x - \frac{x^3}{3}\right]_0^{\sqrt{2}}$	M1 A1	M1 for attempt to integrate			
	=	$= \left(4\sqrt{2} - \frac{2\sqrt{2}}{3}\right) - (0)$	DM1	DM1 for	DM1 for application of limits		
	=	$=\frac{10\sqrt{2}}{3}$					
	Area of trapez	ium =					
	$\frac{1}{2}(4+2)(\sqrt{2})$	$= 3\sqrt{2}$ $\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	B1	B1 for ar	ea of trapezium, allo	w unsimplified	
	Shaded area =	$\frac{10\sqrt{2}}{3} - 3\sqrt{2}$	M1	M1 for su	ubtraction of the two	areas	
	Shaded area =	$\frac{\sqrt{2}}{3}$	A1 [6]	Must be i	n this form		
	Or : Equation of ch	ord:					
	$y = 4 - \sqrt{2x}$		B1	B1 for the	e equation of the cho	rd unsimplified	
	Shaded area =	$\int_{0}^{\sqrt{2}} 4 - x^2 - 4 + \sqrt{2}x \mathrm{d}x$	M1 M1		ubtraction tempt to integrate		
	$\left[\frac{\sqrt{2}}{2}x^2 - \frac{x^3}{3}\right]$	$\int_{0}^{\sqrt{2}} = \frac{\sqrt{2}}{3}$	$\sqrt{A1}$	$\sqrt{A1}$ for $\left[-m\frac{x^2}{2}-\frac{x^3}{3}\right]$ or equivalent, where			
	_		DM1 A1 [6]	-	radient of their chore application of limits	d	

	Page 7		Mark Scheme			Syllabus	Paper
			GCE O LEVEL – Octobe	r/Novembe	r 2013	4037	13
7	(i)	$2t^2 - 2(t^2)$	- <i>t</i> +1)	B1	Correct de	eterminant seen unsi	mplified
		Leading t	$t, t = \frac{3}{2}$	M1 A1 [3]	M1 for simplification and solution A1 for solution of det A=1only, not 1/det		
	(ii)	$\mathbf{A} = \begin{pmatrix} 6\\7 \end{pmatrix}$	$\binom{2}{3}, \mathbf{A}^{-1} = \frac{1}{4} \begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix}$	B1, B1	B1 for $\frac{1}{4}$,	B1 for matrix	
		$\begin{pmatrix} 6 & 2 \\ 7 & 3 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$	$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	B1	B1 for dea	aling correctly with	the factor of 2
		$\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{4} \begin{pmatrix} x \\ x \end{pmatrix}$	$\begin{pmatrix} 3 & -2 \\ -7 & 6 \end{pmatrix} \begin{pmatrix} 10 \\ 11 \end{pmatrix}$	M1	M1 for pr	e-multiplying their	$\begin{pmatrix} 10\\ 11 \end{pmatrix}$ by their
					\mathbf{A}^{-1} to obt	ain a column matrix	
		$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ - 1 \end{pmatrix}$), leading to $x = 2, y = -1$	A1 [5]	Allow $\begin{pmatrix} x \\ y \end{pmatrix}$	$= \begin{pmatrix} 2 \\ -1 \end{pmatrix} \text{ for A1}$	
8	(i)	$\frac{1}{2}(4^2)$ sin	$\theta = 7.5$	M1	M1 for attand equat	tempt to find the are e to 7.5	a of the triangle
		$\sin\theta = \frac{15}{16}$	$\theta = 1.215$	A1 [2]		lution to obtain the g nust include 1.2153	
	(ii)	$\sin\frac{\theta}{2} = \frac{1}{2}$	$\frac{CD}{4}$, (CD = 4.567)	M1	M1 for at	tempt to find CD	
		Arc lengt	h = 6(1.215)	B1	B1 for arc	e length	
		Perimeter	= 2 + 2 + 6(1.215) + their <i>CD</i>	M1	M1 for su	m of 4 appropriate 1	engths
			= awrt 15.9	A1 [4]			
	(iii)	Area = $\frac{1}{2}$	$6^{2}(1.215) - 7.5$	B1 M1	B1 for sec M1 for su	ctor area btraction of the 2 ar	eas
		= 14	.4 (awrt)	A1 [3]			

Page 8	Mark Scheme			Syllabus Paper		
	GCE O LEVEL – Octobe	r/Novembe	per 2013 4037 13			
6 co. (3 co	$-\cos^{2} x) = 5 + \cos x$ $s^{2} x + \cos x - 1 = 0$ $\cos x - 1) (2 \cos x + 1) = 0$	M1 M1	M1 for use of $\sin^2 x = (1 - \cos^2 x)$ correctly M1 for solution of a 3 term quadratic in cos and attempt at solution of a trig equation			
x = 1	$x = 120^{\circ}$	A1, A1 [4]	A1 for each correct solution			
(ii) cos <i>x</i>						
	$v = \frac{1}{3}$ only so	DM1		relating $\cos x$ and $\sin x$	n y or other	
y	<i>v</i> = 19.5°, 160.5°	√A1, √A1 [3]				
(b) cot <i>z</i> (4 c	$\operatorname{ot} z - 3) = 0$	M1	M1 for att	empt to use a factor		
$\cot z = 0,$	$z = \frac{\pi}{2}$	B1	B1 for $\frac{\pi}{2}$	(1.57)		
$\cot z = \frac{3}{4}$, $\tan z = \frac{4}{3}$ so $z = 0.927$	M1 A1 [4]	M1 dealing with cot and attempt at solut			
10 (i) lg <i>s</i>		B1 [1]	Allow in t	able or on graph if i	no contradiction	
(ii)			<u>No marks</u> <u>ln<i>t</i> against</u>	for graph unless lg <i>i</i> lns)	<u>t against lgs (or</u>	
	0.3 0.6 0.78 0.9 1.4 0.8 0.44 0.19	M1 DM1 A1 [3]	DM1 for a A1 all poin	or more points correct the line through 3 or 4 ints correct with a st at least from first p	correct points raight line	
(iii) <u>No marks</u> graph is u	<u>s in this part unless lgt v lgs</u> used					
	: $n = -2$ (allow $-2.1 \rightarrow -1.9$)	M1A1	M1 calcular A1 for $n =$	ates gradient = -2		
Intercept $k = 100$: log k, or other method (allow $90 \rightarrow 120$)	M1, A1 [4]		e of intercept and de correctly (can use a	•	
Alt method Using simultaneou lie on the plotted li	s equations, points used must ne.	M2 A1, A1	Must atten $k = 100$ an	npt to solve 2 valid ad $n = -2$	equations.	
	4, lg $t = 0.6$ so lg $s = 0.69$ (allow $4.8 \rightarrow 5.2$)	M1 A1 [2]	M1 for valid method using either the correct graph or using $lgt = nlgs + lgk$ or $t = ks^n$ using their <i>n</i> and their <i>k</i>			

Page 9	Mark Scheme			Syllabus	Paper	
	GCE O LEVEL – Octobe	r/Novembe	er 2013 4037 13			
11 (i) $\left[e^{2x} + \frac{5}{4}e^{2x}\right]$	11 (i) $\left[e^{2x} + \frac{5}{4}e^{-2x}\right]_0^k$			ch term integrated c ied	orrectly, allow	
$\left(e^{2k}+\frac{5}{4}\right)$	$\left(e^{2k} + \frac{5}{4}e^{-2k}\right) - \left(1 + \frac{5}{4}\right) = 3$			M1 for application of limits to an integral of the form $Ae^{2x} \pm Be^{-2x}$		
$e^{2k} + \frac{5}{4}e^{-\frac{5}{4}}$	$-2k - \frac{12}{4} = 0$	M1	to obtain	putting to $\frac{3}{4}$ and att a 3 term equation. Notice form $Ae^{2x} \pm Be^{2x}$	Aust be using an	
$4e^{4k}-12e^{4k}$	$e^{2k} + 5 = 0$	A1 [5]	Answer g	iven, so must be co	nvinced	
(ii) $4y^2 - 12y$	(ii) $4y^2 - 12y + 5 = 0$			olution of quadratic	equation	
leading to $k = 0.458$	$e^{2k} = \frac{5}{2}, e^{2k} = \frac{1}{2}$	M1	M1 for so exponenti A1 for ea		olving	
π = 0.430	, 0.577	A1, A1 [4]	111 101 04			